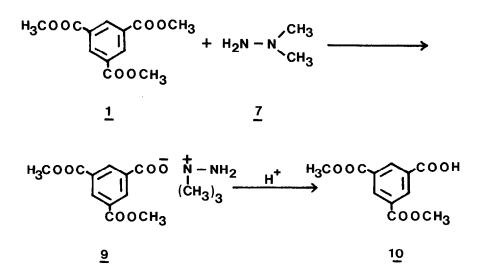
A FACILE SYNTHESIS OF ACID-ESTERS

Sudhakar Kasina[†]and Jay Nematollahi*

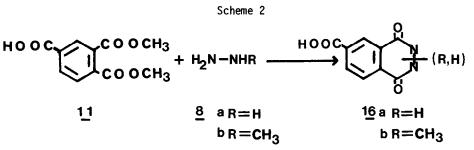
College of Pharmacy, University of Texas at Austin Austin, Texas, 78712, USA


(Received in USA 21 July 1977; received in UK for publication 7 March 1978)

We have reported^{1,2} that 1,1-dimethylhydrazine reacts with various dimethyl esters (vicinal and nonvicinal) to effect monodemethylation; providing a facile method for the synthesis of acid-esters.

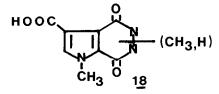
This report is the result of our investigation on the monodemethylation of a series of polycarboxylates, shown in Table I. The selectivity of such demethylation — in the least hindered site — together with its significantly facile and high yield features provide a method to synthesize monoacid-polyesters and mixed esters not previously attainable.

The reaction of trimethyl 1,3,5-benzenetricarboxylate (<u>1</u>) with 1,1-dimethylhydrazine (<u>7</u>) (excess <u>7</u> at room temperature or under carefully controlled reflux temperature) is depicted as an example (Scheme 1).


Scheme 1

A general synthetic procedure for acid esters consists of the following steps: A mixture of 1:5 molar ratio of the polyester and 1,1-dimethylhydrazine was left at room temperature for 24-36 hours or heated under reflux for 6-12 hours (completion of the reaction was monitored by using TLC). The mixture was then evaporated *in vacuo*. After washing several times with CCl_4 , the residue was collected to yield 75-90% of 1,1,1-trimethylhydrazinium salt of the acid-ester (characterized by using spectrometries). By adding 5% HCl, the salt was converted to the acid-ester in 80-90% yield. A mixture of benzene and methanol was used as a solvent for crystallization. For preparation of <u>15</u>, due to its tendency to undergo a facile didemethylation, a slightly different procedure⁷ was adopted.

In contrast to the possible formation of only one monodemethylated product from $\underline{1}$ or $\underline{5}$, those from 2, 3, 4 and 6 required unequivocal structure proof for the position of COOH.


The acid-ester from $\underline{2}$ was allowed to react both with hydrazine and with methylhydrazine (excess, at reflux temperature for 3 hours). The facile formation of benzopyridazines³ (exemplified by <u>l6a</u> and <u>l6b</u> in Scheme 2), which could only result from 2 vicinal ester groups, led to the assignment of the structure dimethyl 4-carboxy-1,2-benzenedicarboxylate (<u>11</u>) to this product.

For acid-ester from 3, similar reaction gave 5-carboxybenzopyridazines 17a and 17b to establish the structure as 12.

The acid-ester resulting from <u>6</u> was assumed to have the structure of trimethyl 4-carboxy-1, 2,3-benzenetricarboxylate (<u>15</u>), analogous to <u>11</u> and <u>12</u> and the fact that its NMR spectrum depicted 2 conspicuously nonequivalent phenyl protons (2 peaks, $\delta = 8.20$ and 8.25).

The position of COOH group in the acid-ester from <u>4</u> was determined to be at 4 by the NMR spectral comparison (the 2 singlets with 2:1 ratio, ascribed to the $COOCH_3$ protons at positions 3 and 4 and at position 2 of the ester respectively, was collapsed to 2 singlets with 1:1 ratio in its acid-ester) and its amenability to react with <u>8b</u> to give pyrrolopyrida-zine³ (<u>18</u>) analogous to <u>17</u>.

	$\frac{1}{q}$	98	7.70-8.80	7.55-8.65	53 ole)	. 8.45	8.20, 8.25	(TFA); h to
	(TFA-TTP) Ph	9.08	7.70	7.55	7.53 (Pyrrole)	8.15,	8.20,	cic acid ive enoug y).
	NMR, 6, ppm(TFA-TTP) ^b CH ₃	4.10	4.08	4.04, 4.09	3.90, 3.95, 4.0 (N-CH ₃)	4.07	4.05	<pre>trifluoroacetic acid (TFA); t (not sensitive enough to % respectively).</pre>
Ş	,1	1730	1720		1715,	1730	1725	olvent, tr Hz, NMR (% and 10%)
cid-Ester	IR(KBr) C=0	1690, 1730	1690, 1720	1690, 1730	1670, 1740,	1700, 1730	1690, 1725	ples. ^b S ument, 60 ds are 26
Yields and Physical Properties of the Acid-Esters	Mp.°C (Tit.Mp.)	145-147	114-117° (115.5-117)	163-165 ^d (162-163)	192-193	108-111	129-131	analytical samples (TTP); instructed the yield
Physical Prope	Yield ^a ,	92	73°	80 ^d	75	75	70	an that of the ilyl) propionat References 4 a
Table I. Yields and		COOH 10	=	Ссоон 12 Ссоон	≝ ≝ ≝ = €	 ₽		purified over-all yield with Mp. lower than that of the analytical samples. ^b Solvent, trifluoroacetic acid (TFA) sodium 2,2,3,3-tetradeutero-3-(trimethylsily1) propionate (TTP); instrument, 60 Hz, NMR (not sensitive enough to pheny1 proton peaks and splittings). ^{o,d} References 4 and 5 (the yields are 26% and 10% respectively).
Tab	Products Acid-Esters	а: (а	æ∕_}č	5 æ.{_}>	— 2 -0 ЗООН	ة <u>﴿</u> _}•	: ŏ-(¯)-¤	^d Partially purified over-all yield with Mp. lowereference, sodium 2,2,3,3-tetradeutero-3-(trimetiresolve all phenyl proton peaks and splittings).
	Starting Polyesters R=COOCH ₃		æ∕•		H H H H H H H H H H H H H H H H H H H		π ← − − − π	$^{\alpha}$ Partially purified over-all reference, sodium 2,2,3,3-te resolve all phenyl proton pe
	Startin	с. С]	ш. ш	¥		^a Partially reference, resolve all

Among the acid-esters shown in Table I only the synthesis of <u>11</u> and <u>12</u> have been reported^{4,5}. The methods, however, were laborious and the yields somewhat poor (26% and 10% respectively).

<u>Acknowledgments</u>: Support of this investigation by the University of Texas Research Institute is gratefully acknowledged. The authors wish to thank Professor Dale Maness for the valuable suggestions in preparing this manuscript.

References and Notes

- 1. S. Kasina, K. Ng and J. Nematollahi, J. Pharm. Sci., 63, 1155 (1974).
- 2. J. Nematollahi and S. Kasina, J. C. S. Chem. Comm., 775 (1974).
- 3. Preliminary structure elucidation of the acid-esters and benzopyridazines was carried out by using IR, NMR, and Mass Spec. Additionally, compounds <u>10</u>, <u>13</u>, <u>17b</u> and <u>18</u> were microanalyzed and compounds <u>14</u>, <u>15</u>, <u>16a</u>, <u>16b</u>, and <u>17a</u> were analyzed by using high resolution mass spectrometry; providing satisfactory results. In the N-methylpyridazines fused to benzene or pyrrole, the position of CH₃ has not been determined.
- 4. R. Wegscheider, H. Perndanner, and O. Auspitzer, Monatsh. Chem., 31, 1267 (1910).
- 5. E. Wenkert, D. Johnston and K. Dave, J. Org. Chem., 29, 2534 (1964).
- 6. The expected splitting due to coupling of 2 nonequivalent protons (an A B system) was not observed, probably due to insufficient resolution power of 60 Hz NMR instrument.
- 7. For preparation of <u>15</u>, it was necessary to modify slightly the general procedure. A 1:1.5 molar ratio of <u>6</u> and <u>7</u> was heated for 2 hours. The unreacted ester was separated by washing the reaction mixture with CCl_4 . The residue was then treated as described above, (following Scheme 1).
- + Present address: M.D. Anderson Hospital and Tumor Institute Houston, Texas 77030